NADPH oxidase 1 mediates α-synucleinopathy in Parkinson's disease.

نویسندگان

  • Ana Clara Cristóvão
  • Subhrangshu Guhathakurta
  • Eugene Bok
  • Goun Je
  • Seung Don Yoo
  • Dong-Hee Choi
  • Yoon-Seong Kim
چکیده

Accumulation of misfolded α-synuclein is the pathological hallmark of Parkinson's disease (PD). Nevertheless, little is known about the mechanism contributing to α-synuclein aggregation and its further toxicity to dopaminergic neurons. Since oxidative stress can increase the expression and aggregation levels of α-synuclein, NADPH oxidases (Noxs), which are responsible for reactive oxygen species generation, could be major players in α-synucleinopathy. Previously, we demonstrated that Nox1 is expressed in dopaminergic neurons of the PD animal models as well as postmortem brain tissue of PD patients, and is responsible for oxidative stress and subsequent neuronal degeneration. Here, using paraquat (PQ)-based in vitro and in vivo PD models, we show that Nox1 has a crucial role in modulating the behavior of α-synuclein expression and aggregation in dopaminergic neurons. We observed in differentiated human dopaminergic cells that Nox1 and α-synuclein expressions are increased under PQ exposure. Nox1 knockdown significantly reduced both α-synuclein expression and aggregation, supporting the role of Nox1 in this process. Furthermore, in rats exposed to PQ, the selective knockdown of Nox1 in the substantia nigra, using adeno-associated virus encoding Nox1-specific shRNA, largely attenuated the PQ-mediated increase of α-synuclein and ubiquitin expression levels as well as α-synuclein aggregates (proteinase K resistant) and A11 oligomers. Significant reductions in oxidative stress level and dopaminergic neuronal loss were also observed. Our data reveal a new mechanism by which α-synuclein becomes a neuropathologic protein through Nox1-mediated oxidative stress. This finding may be used to generate new therapeutic interventions that slower the rate of α-synuclein aggregation and the progression of PD pathogenesis.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

α-Synuclein, a chemoattractant, directs microglial migration via H2O2-dependent Lyn phosphorylation.

Malformed α-Synuclein (α-syn) aggregates in neurons are released into the extracellular space, activating microglia to induce chronic neuroinflammation that further enhances neuronal damage in α-synucleinopathies, such as Parkinson's disease. The mechanisms by which α-syn aggregates activate and recruit microglia remain unclear, however. Here we show that α-syn aggregates act as chemoattractant...

متن کامل

Accumulation of toxic α-synuclein oligomer within endoplasmic reticulum occurs in α-synucleinopathy in vivo.

In Parkinson's disease (PD) and other α-synucleinopathies, prefibrillar α-synuclein (αS) oligomer is implicated in the pathogenesis. However, toxic αS oligomers observed using in vitro systems are not generally seen to be associated with α-synucleinopathy in vivo. Thus, the pathologic significance of αS oligomers to αS neurotoxicity is unknown. Herein, we show that, αS that accumulate within en...

متن کامل

Low CSF Levels of Both α-Synuclein and the α-Synuclein Cleaving Enzyme Neurosin in Patients with Synucleinopathy

Neurosin is a protease that in vitro degrades α-synuclein, the main constituent of Lewy bodies found in brains of patients with synucleinopathy including Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Several studies have reported reduced cerebrospinal fluid (CSF) levels of α-synuclein in synucleinopathy patients and recent data also proposes a significant role of α-synuclein in ...

متن کامل

α-synuclein Induces Mitochondrial Dysfunction through Spectrin and the Actin Cytoskeleton.

Genetics and neuropathology strongly link α-synuclein aggregation and neurotoxicity to the pathogenesis of Parkinson's disease and related α-synucleinopathies. Here we describe a new Drosophila model of α-synucleinopathy based on widespread expression of wild-type human α-synuclein, which shows robust neurodegeneration, early-onset locomotor deficits, and abundant α-synuclein aggregation. We us...

متن کامل

Critical role of microglial NADPH oxidase-derived free radicals in the in vitro MPTP model of Parkinson's disease.

1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) damages dopaminergic neurons as seen in Parkinson's disease. Although increasing evidence suggests an involvement of glia in MPTP neurotoxicity, the nature of this involvement remains unclear. Exploiting the advantage of cell culture systems, we demonstrated that microglia, but not astroglia, significantly enhanced the progression of MPTP-indu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 32 42  شماره 

صفحات  -

تاریخ انتشار 2012